Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            We propose a novel approach for the computational modeling of lignified tissues, such as those found in tree branches and timber. We leverage a stateof the-art strand-based representation for tree form, which we extend to describe biophysical processes at short and long time scales. Simulations at short time scales enable us to model different breaking patterns due to branch bending, twisting, and breaking. On long timescales, our method enables the simulation of realistic branch shapes under the influence of plausible biophysical processes, such as the development of compression and tension wood. We specifically focus on computationally fast simulations of woody material, enabling the interactive exploration of branches and wood breaking. By leveraging Cosserat rod physics, our method enables the generation of a wide variety of breaking patterns. We showcase the capabilities of our method by performing and visualizing numerous experiments.more » « lessFree, publicly-accessible full text available July 26, 2026
- 
            Free, publicly-accessible full text available January 1, 2026
- 
            A major challenge to deploying robots widely is navigation in human-populated environments, commonly referred to associal robot navigation. While the field of social navigation has advanced tremendously in recent years, the fair evaluation of algorithms that tackle social navigation remains hard because it involves not just robotic agents moving in static environments but also dynamic human agents and their perceptions of the appropriateness of robot behavior. In contrast, clear, repeatable, and accessible benchmarks have accelerated progress in fields like computer vision, natural language processing and traditional robot navigation by enabling researchers to fairly compare algorithms, revealing limitations of existing solutions and illuminating promising new directions. We believe the same approach can benefit social navigation. In this article, we pave the road toward common, widely accessible, and repeatable benchmarking criteria to evaluate social robot navigation. Our contributions include (a) a definition of a socially navigating robot as one that respects the principles of safety, comfort, legibility, politeness, social competency, agent understanding, proactivity, and responsiveness to context, (b) guidelines for the use of metrics, development of scenarios, benchmarks, datasets, and simulators to evaluate social navigation, and (c) a design of a social navigation metrics framework to make it easier to compare results from different simulators, robots, and datasets.more » « lessFree, publicly-accessible full text available June 30, 2026
- 
            The placement of vegetation plays a central role in the realism of virtual scenes. We introduce procedural placement models (PPMs) for vegetation in urban layouts. PPMs are environmentally sensitive to city geometry and allow identifying plausible plant positions based on structural and functional zones in an urban layout. PPMs can either be directly used by defining their parameters or learned from satellite images and land register data. This allows us to populate urban landscapes with complex 3D vegetation and enhance existing approaches for generating urban landscapes. Our framework’s effectiveness is shown through examples of large-scale city scenes and close-ups of individually grown tree models. We validate the results generated with our framework with a perceptual user study and its usability based on urban scene design sessions with expert users.more » « less
- 
            We introduce a novel method for reconstructing the 3D geometry of botanical trees from single photographs. Faithfully reconstructing a tree from single-view sensor data is a challenging and open problem because many possible 3D trees exist that fit the tree's shape observed from a single view. We address this challenge by defining a reconstruction pipeline based on three neural networks. The networks simultaneously mask out trees in input photographs, identify a tree's species, and obtain its 3D radial bounding volume - our novel 3D representation for botanical trees. Radial bounding volumes (RBV) are used to orchestrate a procedural model primed on learned parameters to grow a tree that matches the main branching structure and the overall shape of the captured tree. While the RBV allows us to faithfully reconstruct the main branching structure, we use the procedural model's morphological constraints to generate realistic branching for the tree crown. This constraints the number of solutions of tree models for a given photograph of a tree. We show that our method reconstructs various tree species even when the trees are captured in front of complex backgrounds. Moreover, although our neural networks have been trained on synthetic data with data augmentation, we show that our pipeline performs well for real tree photographs. We evaluate the reconstructed geometries with several metrics, including leaf area index and maximum radial tree distances.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
